Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.994
Filtrar
1.
Trials ; 25(1): 270, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641845

RESUMO

BACKGROUND: The World Health Organization recommends universal iron supplementation for children aged 6-23 months in countries where anaemia is seen in over 40% of the population. Conventional ferrous salts have low efficacy due to low oral absorption in children with inflammation. Haem iron is more bioavailable, and its absorption may not be decreased by inflammation. This study aims to compare daily supplementation with haem iron versus ferrous sulphate on haemoglobin concentration and serum ferritin concentration after 12 weeks of supplementation. METHODS: This will be a two-arm, randomised controlled trial. Gambian children aged 6-12 months with anaemia will be recruited within a predefined geographical area and recruited by trained field workers. Eligible participants will be individually randomised using a 1:1 ratio within permuted blocks to daily supplementation for 12 weeks with either 10.0 mg of elemental iron as haem or ferrous sulphate. Safety outcomes such as diarrhoea and infection-related adverse events will be assessed daily by the clinical team (see Bah et al. Additional file 4_Adverse event eCRF). Linear regression will be used to analyse continuous outcomes, with log transformation to normalise residuals as needed. Binary outcomes will be analysed by binomial regression or logistic regression, Primary analysis will be by modified intention-to-treat (i.e., those randomised and who ingested at least one supplement dose of iron), with multiple imputations to replace missing data. Effect estimates will be adjusted for baseline covariates (C-reactive protein, alpha-1-acid glycoprotein, haemoglobin, ferritin, soluble transferrin receptor). DISCUSSION: This study will determine if therapeutic supplementation with haem iron is more efficacious than with conventional ferrous sulphate in enhancing haemoglobin and ferritin concentrations in anaemic children aged 6-12 months. TRIAL REGISTRATION: Pan African Clinical Trial Registry PACTR202210523178727.


Assuntos
Anemia Ferropriva , Anemia , Criança , Humanos , Ferro , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Sais/metabolismo , Sais/uso terapêutico , Gâmbia , Compostos Ferrosos/efeitos adversos , Ferritinas , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Heme/metabolismo , Heme/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
PLoS One ; 19(4): e0299926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625887

RESUMO

Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 µg/kg DM; P = 0.020), iodine 38% (604 to 373 µg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.


Assuntos
Caraciformes , Lisina , Animais , Lisina/metabolismo , Caraciformes/metabolismo , Sais/metabolismo , Valor Nutritivo
3.
Adv Appl Microbiol ; 126: 63-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637107

RESUMO

Selenium (Se) is an essential trace element present as selenocysteine (SeCys) in selenoproteins, which have an important role in thyroid metabolism and the redox system in humans. Se deficiency affects between 500 and 1000 million people worldwide. Increasing Se intake can prevent from bacterial and viral infections. Se deficiency has been associated with cancer, Alzheimer, Parkinson, decreased thyroid function, and male infertility. Se intake depends on the food consumed which is directly related to the amount of Se in the soil as well as on its availability. Se is unevenly distributed on the earth's crust, being scarce in some regions and in excess in others. The easiest way to counteract the symptoms of Se deficiency is to enhance the Se status of the human diet. Se salts are the most toxic form of Se, while Se amino acids and Se-nanoparticles (SeNPs) are the least toxic and most bio-available forms. Some bacteria transform Se salts into these Se species. Generally accepted as safe selenized microorganisms can be directly used in the manufacture of selenized fermented and/or probiotic foods. On the other hand, plant growth-promoting bacteria and/or the SeNPs produced by them can be used to promote plant growth and produce crops enriched with Se. In this chapter we discuss bacterial Se metabolism, the effect of Se on human health, the applications of SeNPs and Se-enriched bacteria, as well as their effect on food fortification. Different strategies to counteract Se deficiency by enriching foods using sustainable strategies and their possible implications for improving human health are discussed.


Assuntos
Nanopartículas , Compostos de Selênio , Selênio , Humanos , Selênio/química , Selênio/metabolismo , Sais , Bactérias/genética , Bactérias/metabolismo
4.
J Vet Sci ; 25(2): e23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568825

RESUMO

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.


Assuntos
Anti-Infecciosos , Sais , Humanos , Animais , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Células Epiteliais , Histona Desacetilases
5.
Angew Chem Int Ed Engl ; 63(19): e202318127, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38570814

RESUMO

The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λmax as long as 720 nm. Computational studies allow the development of a platform for the prediction of λmax and λEm. Furthermore, we demonstrate the compatibility of these novel fluorophores with live cell imaging in HEK293 cells, suggesting PyrAtes as potent intracellular markers.


Assuntos
Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HEK293 , Microscopia de Fluorescência , Sais/química , Estrutura Molecular
6.
Environ Monit Assess ; 196(5): 437, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592553

RESUMO

Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.


Assuntos
Rios , Sais , Qualidade da Água , Monitoramento Ambiental , Carbono , Cloreto de Sódio
7.
Artigo em Inglês | MEDLINE | ID: mdl-38564965

RESUMO

In the present work, a new microextraction procedure combined with gas chromatography-mass spectrometry has been developed for the analysis of several aliphatic amines from urine sample. The sample preparation method was a continuous homogenous liquid phase microextraction that was based on in-situ preparation of 4-chlorophenol: choline chloride deep eutectic solvent. The deep eutectic solvent was prepared by passing the mixture of related compounds through a syringe barrel filled with exothermic salts (calcium chloride and potassium bromide). The released heat by dissolving the salts and increasing the solution ionic strength assists the formation of the deep eutectic solvent. The influence of various factors on the efficiency of the proposed procedure including salts amount, flow rate, pH, salting-out effect, and extraction solvent volume was studied. The calibration curves were linear broadly over the concentration range of 1.2-250 ng mL-1 with coefficient of determinations ≥0.996. The enrichment factors were in the range of 188-246 and the limits of detection and quantification were 0.16-0.37 and 0.56-1.2 ng mL-1, respectively. Based on the results, the offered method was sensitive, rapid, eco-friendly, and efficient for extracting and determining aliphatic amines in urine samples.


Assuntos
Microextração em Fase Líquida , Solventes/química , Microextração em Fase Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Solventes Eutéticos Profundos , Sais , Colina , Limite de Detecção
8.
Food Res Int ; 184: 114250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609228

RESUMO

The influence of different brine temperatures (5, 15 and 25 °C) and ultrasound on the salt gain (SG) and water gain (WG) kinetics of haddock cubes during vacuum impregnation (VI) process was evaluated. Samples were taken from salt solution (4 g NaCl/ 100 g solution) after 0, 20, 40, 60, 100, 140 and 180 min of brining process for salt and moisture analysis. Ultrasound assisted VI and increasing temperature in the salt solution increased (P < 0.05) the salt content, and SG value in the haddock cubes. Furthermore, ultrasound assisted VI enhanced the water diffusion into the cubes and resulted in an increase in WG value. The ultrasound process increased the salt effective diffusion coefficient (Ds) and the highest Ds was found at 25 °C brine temperature. Azuara, Diffusive, Peleg, Weibull, Z and L models were tested to predicting SG and WG kinetics and Azuara was the best model during brining process of haddock cubes.


Assuntos
Gadiformes , Sais , Cloreto de Sódio , Animais , Temperatura , Cloreto de Sódio na Dieta , Água
9.
Sci Rep ; 14(1): 8248, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589617

RESUMO

Characterization of the microbial activity impacts on transport and storage of hydrogen is a crucial aspect of successful Underground Hydrogen Storage (UHS). Microbes can use hydrogen for their metabolism, which can then lead to formation of biofilms. Biofilms can potentially alter the wettability of the system and, consequently, impact the flow dynamics and trapping mechanisms in the reservoir. In this study, we investigate the impact of microbial activity on wettability of the hydrogen/brine/rock system, using the captive-bubble cell experimental approach. Apparent contact angles are measured for bubbles of pure hydrogen in contact with a solid surface inside a cell filled with living brine which contains sulphate reducing microbes. To investigate the impact of surface roughness, two different solid samples are used: a "rough" Bentheimer Sandstone sample and a "smooth" pure Quartz sample. It is found that, in systems where buoyancy and interfacial forces are the main acting forces, the impact of biofilm formation on the apparent contact angle highly depends on the surface roughness. For the "rough" Bentheimer sandstone, the apparent contact angle was unchanged by biofilm formation, while for the smooth pure Quartz sample the apparent contact angle decreased significantly, making the system more water-wet. This decrease in apparent contact angle is in contrast with an earlier study present in the literature where a significant increase in contact angle due to microbial activity was reported. The wettability of the biofilm is mainly determined by the consistency of the Extracellular Polymeric Substances (EPS) which depends on the growth conditions in the system. Therefore, to determine the impact of microbial activity on the wettability during UHS will require accurate replication of the reservoir conditions including surface roughness, chemical composition of the brine, the microbial community, as well as temperature, pressure and pH-value conditions.


Assuntos
Hidrogênio , Quartzo , Molhabilidade , Sais
10.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611844

RESUMO

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Assuntos
Mercúrio , Metais Pesados , Ligantes , Sais , Metais Pesados/toxicidade , Mercúrio/toxicidade , Íons , Antibacterianos/farmacologia , Alcenos , Polímeros , Piridinas
11.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611900

RESUMO

Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Sais , Complexos Multienzimáticos , Triazóis/farmacologia
12.
J Oleo Sci ; 73(3): 321-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432996

RESUMO

Gemlik is a cultivar that grows in a distinct region of Turkiye and is ideal for brine fermentation of brine black table olives. Bursa Protected Designated Origin (PDO) and Izmir non-PDO Gemlik table olives have high levels of oleic acid (74%), total phenol (190 mg/kg), and dry matter (57%), while being low in linoleic acid (8%). The pH values and salt contents were observed to be in the range of 4.1 to 4.3 and 3.9% to 4.8%, respectively. During the fermentation of Gemlik table olives, a mass transfer occurred, resulting in a reduction in reducing sugar and total sugar contents as well as an increase in the salt content of the olives. Despite the reduction of phenolic content in both Gemlik PDO and non-PDO table olives, their antioxidant capacity remains high after fermentation. The oil content, antioxidant activity, phenolic contents, palmitic, palmitoleic, oleic, and linoleic acids were all found to be significant variables in distinguishing between Gemlik PDO and non-PDO table olives using PLS-DA analysis. There is a statistically significant correlation between the phenolic content and oleic (0.588) and linoleic (-0.659) acids (p < 0.05). Bursa PDO and Izmir non-PDO exhibit enhanced nutritional quality and antioxidant activity, unequivocally differentiating them from Hatay and Mersin non-PDO Gemlik table olives with 98% accuracy through discriminant analysis (p < 0.05). PLS-DA and DA can effectively identify variations in the quality of Turkish-style black table olives preserved in brine, originating from PDO and non-PDO growing areas.


Assuntos
Olea , Sais , Antioxidantes , Turquia , Cloreto de Sódio , Fenóis , Cloreto de Sódio na Dieta , Açúcares
13.
BMJ Open ; 14(3): e078082, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38448075

RESUMO

OBJECTIVE: To explore the potential associations between pregnancy cravings and various sociodemographic, lifestyle and health factors. DESIGN: Cross-sectional study. SETTING: Population-based study in Jordan. PARTICIPANTS: A total of 500 women who had children and experienced pregnancy cravings were included. PRIMARY AND SECONDARY OUTCOME MEASURES: Pregnancy cravings are prevalent among Jordanian women and associated with some sociodemographic, lifestyle and health factors. RESULTS: The results showed that 75.40% (377/500) of women experienced food cravings, with 40.6% and 29.1% of them having iron deficiency and vitamin D deficiency, respectively. The most commonly craved food items were sweets (17.2%, 86/500) and salts (22.2%, 115/500), while less than 1.0% of women craved non-food items. No significant correlation (p>0.05) was found between food cravings and the gender of the babies. Significant associations were found between food cravings and the mother's educational level (p=0.023), weight loss (p<0.001) and diseases such as anaemia (p=0.01). CONCLUSION: Pregnancy cravings, particularly for food items, with sweets and salts being the most commonly craved, are prevalent among Jordanian women and are associated with the mother's educational level, changes in weight and the presence of anaemia. Additionally, the study found that iron and vitamin D deficiencies are prevalent health issues among women experiencing these cravings in Jordan. This research has important implications, emphasising the pressing need for targeted nutritional interventions and healthcare strategies to address identified deficiencies and improve maternal health outcomes in the region.


Assuntos
Anemia , Deficiência de Vitamina D , Lactente , Criança , Gravidez , Humanos , Feminino , Jordânia/epidemiologia , Fissura , Estudos Transversais , Sais , Estilo de Vida
14.
Sci Rep ; 14(1): 7505, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553565

RESUMO

Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Gelatina/farmacologia , Gelatina/química , Porosidade , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Metais , Formaldeído , Hidrogéis/farmacologia , Hidrogéis/química , Íons
15.
Environ Pollut ; 348: 123820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527583

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have been suspected as contaminants in various foodstuffs, including salts, all over the world. Regarding the different sizes and polymer types, the mass concentrations of actual plastic particles in salt are not very clear. The purpose of this study is to develop a scalable method for qualitative and quantitative analysis of MPs and NPs by using Pyrolysis Gas Chromatography Quadrupole-Time of Flight mass spectrometry (Py-GC/QTOFMS) to detect their mass concentrations in salt samples. The targeted and suspected lists of polymers in salts were compiled based on the combined results of the high-resolution mass spectrometry (HRMS) full scanning with auxiliary MS dataset and the laser direct infrared (LDIR) chemical imaging analysis. The seven targeted MPs with polymer standards, i.e., polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polycarbonate (PC), were first subjected to a full MS scanning mode of the Py-GC/QTOFMS analysis. Subsequently, the parental masses of their pyrolysis compounds were used as the seeds to generate the related daughter masses. This process established both retention time and mass-pairs matching for the target MS/MS mode for enabling the identification and quantification of the particles. The suspected MPs with a matching degree >0.65 in the LDIR list were explored either by the full scan MS. Only PVC was identified, and PET was suspected. The Py-GC/QTOFMS result is complementary and comparable to the LDIR detection with the matching degree >0.85. We identified that PVC and PET (suspected) can be measured in both commercial and bulk sea salts, and their concentrations in sea salts are much higher than in rock salts, implying heavy contamination of the seawater.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Sais , Pirólise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polímeros/química , Poluentes Químicos da Água/análise
16.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 115-122, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502537

RESUMO

Acridines are a class of bioactive agents which exhibit high biological stability and the ability to intercalate with DNA; they have a wide range of applications. Pyridine derivatives have a wide range of biological activities. To enhance the properties of acridine and 2-amino-3-methylpyridine as the active pharmaceutical ingredient (API), 4-nitrobenzoic acid was chosen as a coformer. In the present study, a mixture of acridine and 4-nitrobenzoic acid forms the salt acridinium 4-nitrobenzoate, C13H10N+·C7H4NO4- (I), whereas a mixture of 2-amino-3-methylpyridine and 4-nitrobenzoic acid forms the salt 2-amino-3-methylpyridinium 4-nitrobenzoate, C6H9N2+·C7H4NO4- (II). In both salts, protonation takes place at the ring N atom. The crystal structure of both salts is predominantly governed by hydrogen-bond interactions. In salt I, C-H...O and N-H...O interactions form an infinite chain in the crystal, whereas in salt II, intermolecular N-H...O interactions form an eight-membered R22(8) ring motif. A theoretical charge-density analysis reveals the charge-density distribution of the inter- and intramolecular interactions of both salts. An in-silico ADME analysis predicts the druglikeness properties of both salts and the results confirm that both salts are potential drug candidates with good bioavailability scores and there is no violation of the Lipinski rules, which supports the druglikeness properties of both salts. However, although both salts exhibit drug-like properties, salt I has higher gastrointestinal absorption than salt II and hence it may be considered a potential drug candidate.


Assuntos
Aminopiridinas , Nitrobenzoatos , Picolinas , Sais , Cristalografia por Raios X , Sais/química , Ligação de Hidrogênio , Nitrobenzoatos/química , Modelos Teóricos , Acridinas
17.
J Environ Manage ; 356: 120571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513584

RESUMO

Nitrous oxide (N2O) emissions from soils are a significant environmental concern due to their contribution to greenhouse gas emissions. Biochar has been considered as a promising soil amendment for its potential to influence soil processes. Iron modification of biochar has been extensively discussed for its ability to enhance adsorption of pollutants, yet its impact on mitigating soil N2O emissions remains poorly understood. In the present study, corn straw (CB) and wood (WB) biochars were treated with FeSO4/FeCl3 (SCB and SWB) and Fe(NO3)3 (NCB and NWB). The effects of these biochars on soil N2O emissions were investigated using soils with varying fertility levels over a 35-day incubation period at 20 °C. Results revealed significant variations in biochar surface chemistry depending on biochar feedstock and iron salts. Compared to pristine biochars, NWB and NCB exhibited higher pH, total N content, and dissolved NO3-N concentrations (246 ± 17 and 298 ± 35 mg kg-1, respectively), but lower bulk and surface C content. In contrast, SWB and SCB demonstrated acidic pH and elevated dissolved NH4-N concentrations (5.38 ± 0.43 and 4.19 ± 0.22 mg kg-1, respectively). In forest soils, NWB and NCB increased cumulative N2O emission by 28.5% and 67.0%, respectively, likely due to the introduction of mineral nitrogen evidenced by significant positive correlation with NO3-N or NH4-N. Conversely, SWB and SCB reduced emissions in the same soil by 28.5% and 6.9%, respectively. In agricultural soil, most biochars, except SWB, enhanced N2O emissions, possibly through the release of labile organic carbon facilitating denitrification. These findings underscore the significance of changes in biochar surface chemistry and the associated potential risk in triggering soil N2O emissions. This study highlights the need for a balanced design of biochar that considers both engineering benefits and climate change mitigation.


Assuntos
Óxido Nitroso , Solo , Óxido Nitroso/análise , Sais , Ferro , Carvão Vegetal
18.
J Environ Manage ; 356: 120580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518500

RESUMO

The burgeoning interest in resource recovery from old dumpsites has significantly propelled the adoption of Landfill Mining (LFM) in recent years. This study is centred around evaluating the quality of materials recovered from the full-scale LFM activities at two major dumpsites in India, focusing on the valorization potential of the segregated legacy waste. A detailed analysis was conducted on the segregated waste fractions based on particle size (-30 mm, 30 to 6 mm, and -6 mm, as sourced from the sites), employing both batch and column leaching methods across a range of liquid-to-solid (L/S) ratios (0.1-10.0 L/kg). The findings reveal a pronounced concentration of contaminants within the -6 mm fraction compared to the 30 to 6 mm and -30 mm fractions. Column leaching tests revealed a reduction in contaminant concentration, correlating with incremental changes in L/S ratio. Notably, this trend remained consistent across varying particle sizes and specific type of contaminants assessed. Notably, color intensity of leachate reduced significantly from 720 to 1640 Platinum Cobalt Units (PCU) at an L/S ratio of 0.1 L/kg to a minimal 94-225 PCU at an L/S of 10 L/kg. Dissolved salts emerged as a primary concern, marking them as significant contaminants in both leaching methods. The analysis confirmed that the segregated fractions comply with the USEPA Waste Acceptance Criteria (WAC), permitting their disposal in non-hazardous waste landfills. However, the elevated presence of dissolved salts, exceeding reuse limits by 5-35 times, limits their open or unrestricted reuse. Despite this, isolated reuse aligns with regulations from the Netherlands and Germany, suggesting viable pathways for compliant utilization. Geotechnical assessments indicate the potential for repurposing the -30 mm fraction as alternative earthfill and construction material. While heavy metal leaching does not pose significant concerns, the prevalent unscientific disposal practices near urban settlements highlight potential human health risks. This investigation enriches the understanding of the physicochemical properties, leaching behaviour, and reuse potential of segregated legacy waste, offering crucial insights for civic authorities in determining appropriate reuse and disposal strategies for such materials.


Assuntos
Metais Pesados , Eliminação de Resíduos , Humanos , Eliminação de Resíduos/métodos , Sais , Instalações de Eliminação de Resíduos , Metais Pesados/análise , Cobalto/análise , Resíduos Sólidos/análise
19.
Biomolecules ; 14(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540696

RESUMO

Calcification is a process of accumulation of calcium in tissues and deposition of calcium salts by the crystallization of PO43- and ionized calcium (Ca2+). It is a crucial process in the development of bones and teeth. However, pathological calcification can occur in almost any soft tissue of the organism. The better studied is vascular calcification, where calcium salts can accumulate in the intima or medial layer or in aortic valves, and it is associated with higher mortality and cardiovascular events, including myocardial infarction, stroke, aortic and peripheral artery disease (PAD), and diabetes or chronic kidney disease (CKD), among others. The process involves an intricate interplay of different cellular components, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and pericytes, concurrent with the activation of several signaling pathways, calcium, Wnt, BMP/Smad, and Notch, and the regulation by different molecular mediators, growth factors (GFs), osteogenic factors and matrix vesicles (MVs). In the present review, we aim to explore the cellular players, molecular pathways, biomarkers, and clinical treatment strategies associated with vascular calcification to provide a current and comprehensive overview of the topic.


Assuntos
Cálcio , Calcificação Vascular , Humanos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Sais , Transdução de Sinais , Calcificação Vascular/metabolismo , Células Cultivadas
20.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516811

RESUMO

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Assuntos
Ecossistema , Sais , Purificação da Água , Salinidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...